Product Information

Aug 2017

Ultrason® S 2010 G6 PSU (Polysulfone)

Product Description

Ultrason S 2010 G6 is a 30% glass reinforced, medium viscosity injection molding PSU grade with high rigidity and strength.

Applications

Typical applications include circuit braker parts, lamp holders, heat shields, impellers, and printer cartridges.

PHYSICAL	ISO Test Method	Property Value
Density, g/cm³	1183	1.46
Mold Shrinkage, parallel, %	294-4	0.29
Mold Shrinkage, normal, %	294-4	0.46
Moisture, %	62	
(50% RH)		0.2
(Saturation)		0.6
RHEOLOGICAL	ISO Test Method	Property Value
Melt Volume Rate (360 C/10 Kg), cc/10min.	1133	30
MECHANICAL	ISO Test Method	Property Value
Tensile Modulus, MPa	527	
23C		8,900
Tensile stress at break, MPa	527	
23C		125
Tensile strain at break, %	527	
23C		2.2
Ball Indentation, MPa	2039-1	193
IMPACT	ISO Test Method	Property Value
Izod Notched Impact, kJ/m ²	ISO Test Method 180	
Izod Notched Impact, kJ/m² -30C		8.5
Izod Notched Impact, kJ/m ² -30C 23C	180	
Izod Notched Impact, kJ/m ² -30C 23C Charpy Notched, kJ/m ²		8.5 8.5
Izod Notched Impact, kJ/m ² -30C 23C Charpy Notched, kJ/m ² -30C	180	8.5 8.5 8.5
Izod Notched Impact, kJ/m ² -30C 23C Charpy Notched, kJ/m ² -30C 23C	180 179	8.5 8.5
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m²	180	8.5 8.5 8.5 8.5
Izod Notched Impact, kJ/m ² -30C 23C Charpy Notched, kJ/m ² -30C 23C Charpy Unnotched, kJ/m ² -30C	180 179	8.5 8.5 8.5 8.5 45
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C	180 179 179	8.5 8.5 8.5 8.5 45 40
Izod Notched Impact, kJ/m ² -30C 23C Charpy Notched, kJ/m ² -30C 23C Charpy Unnotched, kJ/m ² -30C 23C THERMAL	180 179 179 ISO Test Method	8.5 8.5 8.5 8.5 45 40 Property Value
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C THERMAL HDT A, C	180 179 179	8.5 8.5 8.5 8.5 45 40 Property Value
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C THERMAL HDT A, C Coef. of Linear Thermal Expansion, Parallel, mm/mm C	180 179 179 ISO Test Method 75	8.5 8.5 8.5 8.5 45 40 Property Value
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C THERMAL HDT A, C Coef. of Linear Thermal Expansion, Parallel, mm/mm C ELECTRICAL	179 179 ISO Test Method 75	8.5 8.5 8.5 8.5 45 40 Property Value 185 0.2 X10-4 Property Value
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C THERMAL HDT A, C Coef. of Linear Thermal Expansion, Parallel, mm/mm C	180 179 179 ISO Test Method 75	8.5 8.5 8.5 8.5 45 40 Property Value 185 0.2 X10-4
Izod Notched Impact, kJ/m² -30C 23C Charpy Notched, kJ/m² -30C 23C Charpy Unnotched, kJ/m² -30C 23C THERMAL HDT A, C Coef. of Linear Thermal Expansion, Parallel, mm/mm C ELECTRICAL	179 179 ISO Test Method 75	8.5 8.5 8.5 8.5 45 40 Property Value 185 0.2 X10-4 Property Value

General Information: 800-BC-RESIN Technical Assistance: 800-527-TECH (734-324-5150) Web address: http://www.plasticsportal.com/usa

Ultrason® S 2010 G6

Dielectric Constant (100 Hz)	IEC 60250	3.7
Dielectric Constant (1 MHz)	IEC 60250	3.7
Dissipation Factor (100 Hz), E-4	IEC 60250	10
Dissipation Factor (1 MHz), E-4	IEC 60250	60
Dielectric Strength, KV/mm	IEC 60243-1	45
UL RATINGS	UL Test Method	Property Value
Flammability Rating, 1.6mm	UL94	V-1
Relative Temperature Index, 1.6mm	UL746B	
Mechanical w/o Impact, C		160
Mechanical w/ Impact, C		140
Electrical, C		160
Flammability Rating, 3.0mm	UL94	V-0
Relative Temperature Index, 3.0mm	UL746B	
Mechanical w/o Impact, C		160
Mechanical w/ Impact, C		140
Electrical, C		160

Processing Guidelines

Material Handling

Max. Water content: 0.02%

Ultrason pellets can absorb moisture very rapidly and must be dried before processing. A vacuum or dry air oven operating at 130-150C (266-302F) is recommended. Circulating air ovens are unsuitable. Drying time is dependent on moisture level, however the materials must be dried at least 4 hours. Further information concerning safe handling procedures can be obtained from the Safety Data Sheet. Alternatively, please contact your BASF representative.

Typical Profile

Melt Temperature 350-390C (662-734F) Mold Temperature 150-190C (302-374F) Injection and Packing Pressure 35-125 bar (500-1500 psi)

Mold Temperatures

Injection pressure controls the filling of the part and should be applied for 90% of ram travel. Packing pressure affects the final part and can be used effectively in controlling sink marks and shrinkage. It should be applied and maintained until the gate area is completely frozen off.

Back pressure can be utilized to provide uniform melt consistency and reduce trapped air and gas. Minimal back pressure should be utilized to prevent glass breakage.

Pressures

Fast fill rates are recommended to ensure uniform melt delivery to the cavity and prevent premature freezing. Surface appearance is directly affected by injection rate.

Note

Ultrason® S 2010 G6

Note

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.